OFFSET
1,5
LINKS
Sebastian Karlsson, Antidiagonals n = 1..140, flattened
FORMULA
If k = Product (p_j^m_j) then T(n, k) = Product (binomial(n, m_j)*(-1)^m_j).
Dirichlet g.f. of the n-th row: 1/zeta^n(s).
T(n, p) = -n.
T(n, n) = A341837(n).
EXAMPLE
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ...
---+--------------------------------------------------------------
1 | 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 ...
2 | 1 -2 -2 1 -2 4 -2 0 1 4 -2 -2 ...
3 | 1 -3 -3 3 -3 9 -3 -1 3 9 -3 -9 ...
4 | 1 -4 -4 6 -4 16 -4 -4 6 16 -4 -24 ...
5 | 1 -5 -5 10 -5 25 -5 -10 10 25 -5 -50 ...
6 | 1 -6 -6 15 -6 36 -6 -20 15 36 -6 -90 ...
7 | 1 -7 -7 21 -7 49 -7 -35 21 49 -7 -147 ...
8 | 1 -8 -8 28 -8 64 -8 -56 28 64 -8 -224 ...
9 | 1 -9 -9 36 -9 81 -9 -84 36 81 -9 -324 ...
10 | 1 -10 -10 45 -10 100 -10 -120 45 100 -10 -450 ...
11 | 1 -11 -11 55 -11 121 -11 -165 55 121 -11 -605 ...
12 | 1 -12 -12 66 -12 144 -12 -220 66 144 -12 -792 ...
13 | 1 -13 -13 78 -13 169 -13 -286 78 169 -13 -1014 ...
14 | 1 -14 -14 91 -14 196 -14 -364 91 196 -14 -1274 ...
15 | 1 -15 -15 105 -15 225 -15 -455 105 225 -15 -1575 ...
...
MATHEMATICA
T[n_, k_] := If[k == 1, 1, Product[(-1)^e Binomial[n, e], {e, FactorInteger[k][[All, 2]]}]];
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 13 2021 *)
PROG
(Python)
from sympy import binomial, primefactors as pf, multiplicity as mult
from math import prod
def T(n, k):
return prod((-1)**mult(p, k)*binomial(n, mult(p, k)) for p in pf(k))
(PARI) T(n, k) = my(f=factor(k)); for (k=1, #f~, f[k, 1] = binomial(n, f[k, 2])*(-1)^f[k, 2]; f[k, 2]=1); factorback(f); \\ Michel Marcus, Aug 21 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Sebastian Karlsson, Aug 20 2021
STATUS
approved