login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346148
Square array read by descending antidiagonals: T(n, k) = mu^n(k) where mu^1(k) = mu(k) = A008683(k) and for each n >= 1, mu^(n+1)(k) is the Dirichlet convolution of mu(k) and mu^n(k).
8
1, -1, 1, -1, -2, 1, 0, -2, -3, 1, -1, 1, -3, -4, 1, 1, -2, 3, -4, -5, 1, -1, 4, -3, 6, -5, -6, 1, 0, -2, 9, -4, 10, -6, -7, 1, 0, 0, -3, 16, -5, 15, -7, -8, 1, 1, 1, -1, -4, 25, -6, 21, -8, -9, 1, -1, 4, 3, -4, -5, 36, -7, 28, -9, -10, 1, 0, -2, 9, 6, -10, -6
OFFSET
1,5
LINKS
FORMULA
If k = Product (p_j^m_j) then T(n, k) = Product (binomial(n, m_j)*(-1)^m_j).
Dirichlet g.f. of the n-th row: 1/zeta^n(s).
T(n, p) = -n.
T(n, n) = A341837(n).
EXAMPLE
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ...
---+--------------------------------------------------------------
1 | 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 ...
2 | 1 -2 -2 1 -2 4 -2 0 1 4 -2 -2 ...
3 | 1 -3 -3 3 -3 9 -3 -1 3 9 -3 -9 ...
4 | 1 -4 -4 6 -4 16 -4 -4 6 16 -4 -24 ...
5 | 1 -5 -5 10 -5 25 -5 -10 10 25 -5 -50 ...
6 | 1 -6 -6 15 -6 36 -6 -20 15 36 -6 -90 ...
7 | 1 -7 -7 21 -7 49 -7 -35 21 49 -7 -147 ...
8 | 1 -8 -8 28 -8 64 -8 -56 28 64 -8 -224 ...
9 | 1 -9 -9 36 -9 81 -9 -84 36 81 -9 -324 ...
10 | 1 -10 -10 45 -10 100 -10 -120 45 100 -10 -450 ...
11 | 1 -11 -11 55 -11 121 -11 -165 55 121 -11 -605 ...
12 | 1 -12 -12 66 -12 144 -12 -220 66 144 -12 -792 ...
13 | 1 -13 -13 78 -13 169 -13 -286 78 169 -13 -1014 ...
14 | 1 -14 -14 91 -14 196 -14 -364 91 196 -14 -1274 ...
15 | 1 -15 -15 105 -15 225 -15 -455 105 225 -15 -1575 ...
...
MATHEMATICA
T[n_, k_] := If[k == 1, 1, Product[(-1)^e Binomial[n, e], {e, FactorInteger[k][[All, 2]]}]];
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 13 2021 *)
PROG
(Python)
from sympy import binomial, primefactors as pf, multiplicity as mult
from math import prod
def T(n, k):
return prod((-1)**mult(p, k)*binomial(n, mult(p, k)) for p in pf(k))
(PARI) T(n, k) = my(f=factor(k)); for (k=1, #f~, f[k, 1] = binomial(n, f[k, 2])*(-1)^f[k, 2]; f[k, 2]=1); factorback(f); \\ Michel Marcus, Aug 21 2021
CROSSREFS
Main diagonal gives A341837.
Sequence in context: A144082 A145579 A167655 * A262781 A157218 A004718
KEYWORD
sign,tabl
AUTHOR
Sebastian Karlsson, Aug 20 2021
STATUS
approved