This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144082 Eigentriangle generated from inverse of 6th cyclotomic polynomial, row sums = n+1. 1
 1, 1, 1, 0, 1, 2, -1, 0, 2, 3, -1, -1, 0, 3, 4, 0, -1, -2, 0, 4, 5, 1, 0, -2, -3, 0, 5, 6, 1, 1, 0, -3, -4, 0, 6, 7, 0, 1, 2, 0, -4, -5, 0, 7, 8, -1, 0, 2, 3, 0, -5, -6, 0, 8, 9, -1, -1, 0, 3, 4, 0, -6, -7, 0, 9, 10, 0, -1, -2, 0, 4, 5, 0, -7, -8, 0, 10, 11, 1, 0, -2, -3, 0, 5, 6, 0, -8, -9, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Left border = A010892. Right border = (1, 1, 2, 3, 4,...), row sums = (1, 2, 3,...). LINKS FORMULA Eigentriangle by rows, T(n,k) = A010892(n-k)*A000027(k-1). A010892 = the inverse of the 6th cyclotomic polynomial: (1, 1, 0, -1, -1, 0,...); and A000027(k-1) = (1, 2, 3,...) offset, = (1, 1, 2, 3,...). Let A = an infinite lower triangular decrescendo subsequences matrix with A010892: (1, 1, 0, -1, -1, 0,...) in every column: (1; 1,1; 0,1,1; -1,0,1,1;...); let B = an infinite lower triangular matrix with (1,1,2,3,...) in the main diagonal and the rest zeros; then A144082 = A*B. EXAMPLE First few rows of the triangle = 1; 1, 1; 0, 1, 2; -1, 0, 2, 3; -1, -1, 0, 3, 4; 0, -1, -2, 0, 4, 5; 1, 0, -2, -3, 0, 5, 6; 1, 1, 0, -3, -4, 0, 6, 7; 0, 1, 2, 0, -4, -5, 0, 7, 8; -1, 0, 2, 3, 0, -5, -6, 0, 8, 9; -1, -1, 0, 3, 4, -6, -7, 0, 9, 10; 0, -1, -2, 0, 4, 5, 0, -7, -8, 0, 10, 11; 1, 0, -2, -3, 0, 5, 6, 0, -8, -9, 0, 11, 12; ... Example: row 3 = (-1, 0, 3, 4) = termwise product of (-1, 0, 1, 1) and (1, 2, 3, 4) = (-1*1, 0*2, 1*3, 1*4). (-1, 0, 1, 1) = first 4 terms of A010892 reversed. CROSSREFS Cf. A000027, A010892. Sequence in context: A219605 A123949 A236358 * A145579 A167655 A262781 Adjacent sequences:  A144079 A144080 A144081 * A144083 A144084 A144085 KEYWORD tabl,sign AUTHOR Gary W. Adamson, Sep 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 14:28 EDT 2019. Contains 328114 sequences. (Running on oeis4.)