OFFSET
1,16
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 26.
(ii) For any integer n > 37, there is a positive integer k < n such that m = phi(k)/2 + phi(n-k)/12 is an integer with 2*3^m - 1 prime.
We have verified both parts for n up to 50000. Clearly, part (i) implies that there are infinitely many positive integers m with 2*3^m + 1 prime, while part (ii) implies that there are infinitely many positive integers m with 2*3^m - 1 prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(36) = 1 since phi(15)/2 + phi(21)/12 = 4 + 1 = 5 with 2*3^5 + 1 = 487 prime.
MATHEMATICA
p[n_]:=IntegerQ[n]&&PrimeQ[2*3^n+1]
f[n_, k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 23 2014
STATUS
approved