

A234451


Number of ways to write n = k + m with k > 0 and m > 0 such that 2^(phi(k)/2 + phi(m)/6) + 3 is prime, where phi(.) is Euler's totient function.


8



0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 3, 5, 4, 5, 4, 6, 4, 4, 5, 5, 5, 6, 6, 6, 5, 6, 8, 7, 6, 5, 7, 8, 7, 10, 6, 7, 9, 7, 5, 5, 8, 6, 6, 7, 9, 3, 7, 10, 9, 3, 8, 6, 8, 6, 9, 9, 12, 5, 8, 8, 10, 9, 10, 9, 8, 8, 8, 10, 9, 12, 10, 13, 11, 9, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


COMMENTS

Conjecture: (i) a(n) > 0 for all n > 9. Also, any integer n > 13 can be written as k + m with k > 0 and m > 0 such that 2^(phi(k)/2 + phi(m)/6)  3 is prime.
(ii) Each integer n > 25 can be written as k + m with k > 0 and m > 0 such that 3*2^(phi(k)/2 + phi(m)/8) + 1 (or 3*2^(phi(k)/2 + phi(m)/12) + 1 when n > 38) is prime. Also, any integer n > 14 can be written as k + m with k > 0 and m > 0 such that 3*2^(phi(k)/2 + phi(m)/12)  1 is prime.
This conjecture implies that there are infinitely many primes in any of the four forms 2^n + 3, 2^n  3, 3*2^n + 1, 3*2^n  1.
We have verified the conjecture for n up to 50000.


LINKS



EXAMPLE

a(10) = 1 since 10 = 3 + 7 with 2^(phi(3)/2 + phi(7)/6) + 3 = 7 prime.
a(11) = 1 since 11 = 4 + 7 with 2^(phi(4)/2 + phi(7)/6) + 3 = 7 prime.
a(12) = 2 since 12 = 3 + 9 = 5 + 7 with 2^(phi(3)/2 + phi(9)/6) + 3 = 7 and 2^(phi(5)/2 + phi(7)/6) + 3 = 11 both prime.
a(769) = 1 since 769 = 31 + 738 with 2^(phi(31)/2 + phi(738)/6) + 3 = 2^(55) + 3 prime.
a(787) = 1 since 787 = 112 + 675 with 2^(phi(112)/2 + phi(675)/6) + 3 = 2^(84) + 3 prime.
a(867) = 1 since 867 = 90 + 777 with 2^(phi(90)/2 + phi(777)/6) + 3 = 2^(84) + 3 prime.
a(869) = 1 since 869 = 51 + 818 with 2^(phi(51)/2 + phi(818)/6) + 3 = 2^(84) + 3 prime.
a(913) = 1 since 913 = 409 + 504 with 2^(phi(409)/2 + phi(504)/6) + 3 = 2^(228) + 3 prime.
a(1085) = 1 since 1085 = 515 + 570 with 2^(phi(515)/2 + phi(570)/6) + 3 = 2^(228) + 3 prime.


MATHEMATICA

f[n_, k_]:=2^(EulerPhi[k]/2+EulerPhi[nk]/6)+3
a[n_]:=Sum[If[PrimeQ[f[n, k]], 1, 0], {k, 1, n1}]
Table[a[n], {n, 1, 100}]


CROSSREFS

Cf. A000010, A000040, A000079, A050415, A057733, A234309, A234310, A234337, A234344, A234346, A234347, A234359, A234360, A234361, A234388, A234399, A234470, A236358.


KEYWORD

nonn


AUTHOR



STATUS

approved



