login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234453 Number of (n+1)X(2+1) 0..5 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant stress 1X1 tilings) 1
2400, 31112, 427956, 6049248, 86545688, 1246417268, 17999990956, 260509952008, 3772324919216, 54683798470992, 792660439569184, 11498882870642596, 166774556604227496, 2420540967413065532, 35121760962460304188 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 2 of A234458

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 24*a(n-1) +202*a(n-2) -8375*a(n-3) +18366*a(n-4) +832456*a(n-5) -4372543*a(n-6) -32845569*a(n-7) +252119346*a(n-8) +475222218*a(n-9) -6386106484*a(n-10) +1228195800*a(n-11) +78155524488*a(n-12) -93005666672*a(n-13) -459032184864*a(n-14) +814396694400*a(n-15) +1253941668864*a(n-16) -2968493257344*a(n-17) -1338994735872*a(n-18) +5126543725056*a(n-19) -147546633728*a(n-20) -4053307347968*a(n-21) +1013644265472*a(n-22) +1200673271808*a(n-23) -333045153792*a(n-24) -113446158336*a(n-25) +22613852160*a(n-26)

EXAMPLE

Some solutions for n=2

..0..3..2....1..1..0....3..2..1....4..3..2....2..2..2....4..5..1....1..0..1

..0..2..2....1..2..2....4..2..2....5..3..1....3..2..3....2..4..1....5..3..5

..3..4..3....3..5..4....4..3..4....5..4..3....5..5..5....1..2..0....1..0..3

CROSSREFS

Sequence in context: A204357 A043420 A233880 * A236084 A204304 A235414

Adjacent sequences:  A234450 A234451 A234452 * A234454 A234455 A234456

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 10:05 EDT 2019. Contains 328146 sequences. (Running on oeis4.)