login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341837 If n = Product (p_j^k_j) then a(n) = Product ((-1)^k_j * binomial(n, k_j)). 2
1, -2, -3, 6, -5, 36, -7, -56, 36, 100, -11, -792, -13, 196, 225, 1820, -17, -2754, -19, -3800, 441, 484, -23, 48576, 300, 676, -2925, -10584, -29, -27000, -31, -201376, 1089, 1156, 1225, 396900, -37, 1444, 1521, 395200, -41, -74088, -43, -41624, -44550 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A346148(n, n). - Sebastian Karlsson, Aug 22 2021

MATHEMATICA

a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[n, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 45}]

PROG

(PARI) a(n) = my(f=factor(n)[, 2]); prod(k=1, #f, (-1)^f[k]*binomial(n, f[k])); \\ Michel Marcus, Feb 21 2021

CROSSREFS

Cf. A007427, A007428, A008683, A163767, A247343, A341831, A341832, A341833, A341834, A341835, A341836.

Cf. A346148.

Sequence in context: A066838 A228151 A276087 * A084678 A221020 A333304

Adjacent sequences:  A341834 A341835 A341836 * A341838 A341839 A341840

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Feb 21 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 12:43 EST 2022. Contains 350472 sequences. (Running on oeis4.)