Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 31 2021 04:09:30
%S 1,-2,-3,6,-5,36,-7,-56,36,100,-11,-792,-13,196,225,1820,-17,-2754,
%T -19,-3800,441,484,-23,48576,300,676,-2925,-10584,-29,-27000,-31,
%U -201376,1089,1156,1225,396900,-37,1444,1521,395200,-41,-74088,-43,-41624,-44550
%N If n = Product (p_j^k_j) then a(n) = Product ((-1)^k_j * binomial(n, k_j)).
%H Seiichi Manyama, <a href="/A341837/b341837.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A346148(n, n). - _Sebastian Karlsson_, Aug 22 2021
%t a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[n, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 45}]
%o (PARI) a(n) = my(f=factor(n)[,2]); prod(k=1, #f, (-1)^f[k]*binomial(n, f[k])); \\ _Michel Marcus_, Feb 21 2021
%Y Cf. A007427, A007428, A008683, A163767, A247343, A341831, A341832, A341833, A341834, A341835, A341836.
%Y Cf. A346148.
%K sign
%O 1,2
%A _Ilya Gutkovskiy_, Feb 21 2021