login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066838
Product of primes < n that do not divide n.
2
1, 1, 2, 3, 6, 5, 30, 105, 70, 21, 210, 385, 2310, 2145, 2002, 15015, 30030, 85085, 510510, 969969, 461890, 440895, 9699690, 37182145, 44618574, 8580495, 74364290, 15935205, 223092870, 215656441, 6469693230, 100280245065
OFFSET
1,3
LINKS
FORMULA
a(prime(n)) = A002110(n-1). - Michel Marcus, May 20 2014
a(n) = e^[Sum_{k=2..n} (1-floor(n/k)+floor((n-1)/k))*A010051(k)*M(k)] where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016
EXAMPLE
a(8) = 105 = 3 * 5 * 7 because 3, 5 and 7 are the primes < 8 that do not divide 8.
MAPLE
Primes:= select(isprime, [$2..100]):
seq(convert(select(t -> t <= n and n mod t <> 0, Primes), `*`), n=1..100); # Robert Israel, Jun 19 2016
MATHEMATICA
Table[Apply[Times, Select[Prime@ Range@ PrimePi@ n, CoprimeQ[#, n] &] /. {} -> 1], {n, 32}] (* or *)
Table[E^Sum[(1 - Floor[n/k] + Floor[(n - 1)/k]) Boole@ PrimeQ[k] MangoldtLambda@ k, {k, 2, n}], {n, 32}] (* Michael De Vlieger, Jun 22 2016 *)
Table[Times@@Complement[Prime[Range[PrimePi[n]]], FactorInteger[n][[All, 1]]], {n, 40}] (* Harvey P. Dale, Feb 05 2022 *)
PROG
(PARI) a(n) = prod(i=1, n-1, if (isprime(i) && (n%i) , i, 1)); \\ Michel Marcus, May 20 2014
CROSSREFS
Cf. A002110 (primorial numbers).
Sequence in context: A327454 A124655 A338219 * A228151 A276087 A341837
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 20 2002
STATUS
approved