Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 05 2022 12:37:15
%S 1,1,2,3,6,5,30,105,70,21,210,385,2310,2145,2002,15015,30030,85085,
%T 510510,969969,461890,440895,9699690,37182145,44618574,8580495,
%U 74364290,15935205,223092870,215656441,6469693230,100280245065
%N Product of primes < n that do not divide n.
%H Robert Israel, <a href="/A066838/b066838.txt">Table of n, a(n) for n = 1..2350</a>
%F a(prime(n)) = A002110(n-1). - _Michel Marcus_, May 20 2014
%F a(n) = e^[Sum_{k=2..n} (1-floor(n/k)+floor((n-1)/k))*A010051(k)*M(k)] where M(n) is the Mangoldt function. - _Anthony Browne_, Jun 17 2016
%e a(8) = 105 = 3 * 5 * 7 because 3, 5 and 7 are the primes < 8 that do not divide 8.
%p Primes:= select(isprime, [$2..100]):
%p seq(convert(select(t -> t <= n and n mod t <> 0, Primes),`*`), n=1..100); # _Robert Israel_, Jun 19 2016
%t Table[Apply[Times, Select[Prime@ Range@ PrimePi@ n, CoprimeQ[#, n] &] /. {} -> 1], {n, 32}] (* or *)
%t Table[E^Sum[(1 - Floor[n/k] + Floor[(n - 1)/k]) Boole@ PrimeQ[k] MangoldtLambda@ k, {k, 2, n}], {n, 32}] (* _Michael De Vlieger_, Jun 22 2016 *)
%t Table[Times@@Complement[Prime[Range[PrimePi[n]]],FactorInteger[n][[All,1]]],{n,40}] (* _Harvey P. Dale_, Feb 05 2022 *)
%o (PARI) a(n) = prod(i=1, n-1, if (isprime(i) && (n%i) , i, 1)); \\ _Michel Marcus_, May 20 2014
%Y Cf. A002110 (primorial numbers).
%K nonn
%O 1,3
%A _Leroy Quet_, Jan 20 2002