login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138353
Primes of the form k^2 + 9.
4
13, 73, 109, 409, 1033, 1453, 1609, 2713, 3373, 3853, 4909, 6733, 7753, 9613, 10009, 12109, 12553, 13933, 19609, 20173, 25609, 28909, 35353, 36109, 40009, 40813, 44953, 47533, 48409, 58573, 88813, 94873, 102409, 110233, 122509, 128173, 135433
OFFSET
1,1
COMMENTS
It is easy to show that k mod 12 must be 2,4,8,10 and that since k^2 mod 12 = 4, then p mod 12 = 1. In base 12, the sequence is 11, 61, 91, 2X1, 721, X11, E21, 16X1, 1E51, 2291, 2X11, 3X91, 45X1, 5691, 5961, 7011, 7321, 8091, E421, E811, 129X1, where X is for 10, E is for 11. - Walter Kehowski, May 31 2008
LINKS
MATHEMATICA
Intersection[Table[n^2+9, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=9, i<=9, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ]
Select[Range[400]^2+9, PrimeQ] (* Harvey P. Dale, Jan 31 2017 *)
PROG
(Magma) [ a: n in [0..900] | IsPrime(a) where a is n^2+9] // Vincenzo Librandi, Nov 24 2010
(Haskell)
a138353 n = a138353_list
a138353_list = filter ((== 1) . a010051') $ map (+ 9) a000290_list
-- Reinhard Zumkeller, Mar 12 2012
(PARI) is(n)=isprime(n) && issquare(n-9) \\ Charles R Greathouse IV, Aug 21 2017
CROSSREFS
Subsequence of A185086.
Sequence in context: A139911 A097460 A336796 * A097402 A255416 A201788
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Apr 28 2010
STATUS
approved