login
A138353
Primes of the form k^2 + 9.
4
13, 73, 109, 409, 1033, 1453, 1609, 2713, 3373, 3853, 4909, 6733, 7753, 9613, 10009, 12109, 12553, 13933, 19609, 20173, 25609, 28909, 35353, 36109, 40009, 40813, 44953, 47533, 48409, 58573, 88813, 94873, 102409, 110233, 122509, 128173, 135433
OFFSET
1,1
COMMENTS
It is easy to show that k mod 12 must be 2,4,8,10 and that since k^2 mod 12 = 4, then p mod 12 = 1. In base 12, the sequence is 11, 61, 91, 2X1, 721, X11, E21, 16X1, 1E51, 2291, 2X11, 3X91, 45X1, 5691, 5961, 7011, 7321, 8091, E421, E811, 129X1, where X is for 10, E is for 11. - Walter Kehowski, May 31 2008
LINKS
MATHEMATICA
Intersection[Table[n^2+9, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=9, i<=9, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ]
Select[Range[400]^2+9, PrimeQ] (* Harvey P. Dale, Jan 31 2017 *)
PROG
(Magma) [ a: n in [0..900] | IsPrime(a) where a is n^2+9] // Vincenzo Librandi, Nov 24 2010
(Haskell)
a138353 n = a138353_list
a138353_list = filter ((== 1) . a010051') $ map (+ 9) a000290_list
-- Reinhard Zumkeller, Mar 12 2012
(PARI) is(n)=isprime(n) && issquare(n-9) \\ Charles R Greathouse IV, Aug 21 2017
CROSSREFS
Subsequence of A185086.
Sequence in context: A139911 A097460 A336796 * A097402 A255416 A201788
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Apr 28 2010
STATUS
approved