Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:45:33
%S 13,73,109,409,1033,1453,1609,2713,3373,3853,4909,6733,7753,9613,
%T 10009,12109,12553,13933,19609,20173,25609,28909,35353,36109,40009,
%U 40813,44953,47533,48409,58573,88813,94873,102409,110233,122509,128173,135433
%N Primes of the form k^2 + 9.
%C It is easy to show that k mod 12 must be 2,4,8,10 and that since k^2 mod 12 = 4, then p mod 12 = 1. In base 12, the sequence is 11, 61, 91, 2X1, 721, X11, E21, 16X1, 1E51, 2291, 2X11, 3X91, 45X1, 5691, 5961, 7011, 7321, 8091, E421, E811, 129X1, where X is for 10, E is for 11. - _Walter Kehowski_, May 31 2008
%H Reinhard Zumkeller, <a href="/A138353/b138353.txt">Table of n, a(n) for n = 1..10000</a>
%t Intersection[Table[n^2+9,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=9,i<=9,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ]
%t Select[Range[400]^2+9,PrimeQ] (* _Harvey P. Dale_, Jan 31 2017 *)
%o (Magma) [ a: n in [0..900] | IsPrime(a) where a is n^2+9] // _Vincenzo Librandi_, Nov 24 2010
%o (Haskell)
%o a138353 n = a138353_list
%o a138353_list = filter ((== 1) . a010051') $ map (+ 9) a000290_list
%o -- _Reinhard Zumkeller_, Mar 12 2012
%o (PARI) is(n)=isprime(n) && issquare(n-9) \\ _Charles R Greathouse IV_, Aug 21 2017
%Y Subsequence of A185086.
%Y Cf. A010051, A000290, A005473.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, May 07 2008
%E More terms from _Vincenzo Librandi_, Apr 28 2010