login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.
4

%I #36 Jul 31 2021 21:58:48

%S 1,29,41,71,139,169,181,209,211,239,251,281,349,379,391,419,421,449,

%T 461,491,559,589,601,629,631,659,671,701,769,799,811,839,841,869,881,

%U 911,979,1009,1021,1049,1051,1079,1091,1121,1189,1219,1231,1259,1261,1289

%N Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.

%C Integers of the form sqrt(840*k+1) for k >= 0. - _Boyd Blundell_, Jul 10 2021

%H Ray Chandler, <a href="/A057539/b057539.txt">Table of n, a(n) for n = 1..10000</a>

%H A. Feist, <a href="http://www.kappamuepsilon.org/pages/a/Pentagon/Vol_60_Num_1_Fall_2000.pdf">On the Density of Birthday Sets</a>, The Pentagon, 60 (No. 1, Fall 2000), 31-35.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).

%F G.f.: x*(1 + 28*x + 12*x^2 + 30*x^3 + 68*x^4 + 30*x^5 + 12*x^6 + 28*x^7 + x^8) / ((1+x)*(x^2+1)*(x^4+1)*(x-1)^2). - _R. J. Mathar_, Oct 08 2011

%F a(n) = a(n-8) + 210 = a(n-1) + a(n-8) - a(n-9). - _Charles R Greathouse IV_, Oct 20 2014

%F a(n) = 105n/4 + O(1). - _Charles R Greathouse IV_, Oct 20 2014

%t LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,29,41,71,139,169,181,209,211},50] (* _Harvey P. Dale_, Sep 24 2014 *)

%o (PARI) is_A057539(n,m=[2,3,4,5,6,7])=!for(i=1,#m,abs((n+1)%m[i]-1)==1||return)

%o (PARI) is(n)=for(i=4,7,if(abs(centerlift(Mod(n,i)))!=1, return(0))); 1 \\ _Charles R Greathouse IV_, Oct 20 2014

%o (Python)

%o def ok(n): return all(n%d in [1, d-1] for d in range(2, 8))

%o def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]

%o print(aupto(1300)) # _Michael S. Branicky_, Jan 29 2021

%Y Cf. A057538, A057540, A057541.

%K easy,nonn

%O 1,2

%A Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

%E Offset corrected to 1 by _Ray Chandler_, Jul 29 2019