login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104072
Primes of the form 2^n + 5^2.
4
29, 41, 89, 281, 1049, 1048601, 4194329, 17179869209, 1180591620717411303449, 4951760157141521099596496921, 5192296858534827628530496329220121, 332306998946228968225951765070086169
OFFSET
1,1
COMMENTS
Primes of the form 4^n + 4! + 1. - Vincenzo Librandi, Nov 13 2010
Indeed, calculating mod 3 we have 2^n + 5^2 = (-1)^n + 1 = 0 if n is odd, so n must be even to yield a prime. - M. F. Hasler, Nov 13 2010
Those even values of n are given in A157006. Since n = 2k, these prime numbers also have the form 4^k + 25, where k is given in A204388. - Timothy L. Tiffin, Aug 06 2016
These primes a(m) can be used to generate numbers having deficiency 26. The formula a(m)*(a(m)-25)/2 produces those terms in A275702 having rightmost digit 8. - Timothy L. Tiffin, Aug 09 2016
FORMULA
a(m) = 2^(A157006(m)) + 5^2 = 4^(A204388(m)) + 25. - Timothy L. Tiffin, Aug 07 2016
If n == 0 mod 4, then a(m) == 1 mod 10. If n == 2 mod 4, then a(m) == 9 mod 10. - Timothy L. Tiffin, Aug 09 2016
EXAMPLE
From Timothy L. Tiffin, Aug 07 2016: (Start)
a(1) = 2^2 + 5^2 = 4 + 25 = 29.
a(2) = 2^4 + 5^2 = 16 + 25 = 41.
a(3) = 2^6 + 5^2 = 64 + 25 = 89.
a(4) = 2^8 + 5^2 = 256 + 25 = 281.
a(5) = 2^10 + 5^2 = 1024 + 25 = 1049.
a(6) = 2^20 + 5^2 = 1048576 + 25 = 1048601. (End)
MATHEMATICA
a = Delete[Union[Flatten[Table[If [PrimeQ[2^n + 25] == True, 2^n + 25, 0], {n, 1, 400}]]], 1]
Select[2^Range[0, 120]+25, PrimeQ] (* Harvey P. Dale, Jun 20 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 02 2005
STATUS
approved