login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form (4k+3)^2-8 or (4k+5)^2+4.
9

%I #10 Sep 08 2022 08:46:02

%S 1,29,41,85,113,173,217,293,353,445,521,629,721,845,953,1093,1217,

%T 1373,1513,1685,1841,2029,2201,2405,2593,2813,3017,3253,3473,3725,

%U 3961,4229,4481,4765,5033,5333,5617,5933,6233,6565,6881,7229,7561,7925,8273,8653

%N Numbers of the form (4k+3)^2-8 or (4k+5)^2+4.

%C For every odd n the triple (a(n-1)^2, a(n)^2 , a(n+1)^2) is an arithmetic progression, i.e., 2*a(n)^2 = a(n-1)^2 + a(n+1)^2.

%C In general a triple((x-y)^2,z^2,(x+y)^2) is an arithmetic progression if and only if x^2+y^2=z^2.

%C The first differences of this sequence is the interleaved sequence 28,12,44,28,60,44....

%F a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).

%F O.G.f.: (1+27*x-17*x^2+5*x^3)/((1+x)*(1-x)^3).

%F a(n) = 4*n*(n+3)-6*(-1)^n+7.

%F 2*a(2n+1)^2 = a(2n)^2 + a(2n+2)^2.

%e a(4) = 2*a(3) - 2*a(1) + a(0) = 2*85 - 2*29 + 1 = 113.

%o (Magma) I:=[1, 29, 41, 85]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];

%o (Maxima) A214405(n):=4*n*(n+3)-6*(-1)^n+7$

%o makelist(A214405(n),n,0,30); /* _Martin Ettl_, Nov 01 2012 */

%Y Cf. A178218, A214345.

%K nonn,easy

%O 1,2

%A _Yasir Karamelghani Gasmallah_, Jul 15 2012