login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178325
G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^(n^2).
9
1, 1, 2, 6, 21, 83, 363, 1730, 8889, 48829, 284858, 1755325, 11374092, 77208275, 547261631, 4039201624, 30967330941, 246084049137, 2023030659970, 17175765057532, 150367445873108, 1355528352031358, 12566899017130088
OFFSET
0,3
COMMENTS
Equals the row sums of triangle A214398.
a(n) is the number of weak compositions of n such that if the first part is equal to k then there are a total of k^2 + 1 parts. A weak composition is an ordered partition of the integer n into nonnegative parts. a(3) = 6 because we have: 1+2, 2+0+0+0+1, 2+0+0+1+0, 2+0+1+0+0, 2+1+0+0+0, 3+0+0+0+0+0+0+0+0+0. - Geoffrey Critzer, Oct 09 2013
LINKS
FORMULA
a(n) = Sum_{k=0..n} C((n-k)^2 + k-1, k).
G.f.: A(x) = Sum_{n>=0} (x-x^2)^n*Product_{k=1..n} ((1-x)^(4*k-3) - x)/((1-x)^(4*k-1) - x) due to a q-series identity.
Let q = 1/(1-x), then g.f. A(x) equals the continued fraction:
. A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
log(a(n)) ~ n*(log(n) - 2) * (1 + log(4*n) - log((log(n) - 2)*log(n))) / log(n). - Vaclav Kotesovec, Jan 10 2023
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 83*x^5 + 363*x^6 +...
A(x) = 1 + (x-x^2)*((1-x)-x)/((1-x)^3-x) + (x-x^2)^2*((1-x)-x)*((1-x)^5-x)/(((1-x)^3-x)*((1-x)^7-x)) + (x-x^2)^3*((1-x)-x)*((1-x)^5-x)*((1-x)^9-x)/(((1-x)^3-x)*((1-x)^7-x)*((1-x)^11-x)) +...
MATHEMATICA
nn=22; CoefficientList[Series[Sum[x^k/(1-x)^(k^2), {k, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Oct 09 2013 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial((n-k)^2+k-1, k))}
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m/(1-x+x*O(x^n))^(m^2)), n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, (x-x^2)^m*prod(k=1, m, ((1-x)^(4*k-3)-x)/((1-x)^(4*k-1)-x +x*O(x^n)))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 21 2010
STATUS
approved