login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178325 G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^(n^2). 9
1, 1, 2, 6, 21, 83, 363, 1730, 8889, 48829, 284858, 1755325, 11374092, 77208275, 547261631, 4039201624, 30967330941, 246084049137, 2023030659970, 17175765057532, 150367445873108, 1355528352031358, 12566899017130088 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equals the row sums of triangle A214398.

a(n) is the number of weak compositions of n such that if the first part is equal to k then there are a total of k^2 + 1 parts.  A weak composition is an ordered partition of the integer n into nonnegative parts. a(3) = 6 because we have: 1+2, 2+0+0+0+1, 2+0+0+1+0, 2+0+1+0+0, 2+1+0+0+0, 3+0+0+0+0+0+0+0+0+0. - Geoffrey Critzer, Oct 09 2013

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..250

FORMULA

a(n) = Sum_{k=0..n} C((n-k)^2 + k-1, k).

G.f.: A(x) = Sum_{n>=0} (x-x^2)^n*Product_{k=1..n} ((1-x)^(4*k-3) - x)/((1-x)^(4*k-1) - x) due to a q-series identity.

Let q = 1/(1-x), then g.f. A(x) equals the continued fraction:

. A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))

due to an identity of a partial elliptic theta function.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 83*x^5 + 363*x^6 +...

A(x) = 1 + (x-x^2)*((1-x)-x)/((1-x)^3-x) + (x-x^2)^2*((1-x)-x)*((1-x)^5-x)/(((1-x)^3-x)*((1-x)^7-x)) + (x-x^2)^3*((1-x)-x)*((1-x)^5-x)*((1-x)^9-x)/(((1-x)^3-x)*((1-x)^7-x)*((1-x)^11-x)) +...

MATHEMATICA

nn=22; CoefficientList[Series[Sum[x^k/(1-x)^(k^2), {k, 0, nn}], {x, 0, nn}], x]  (* Geoffrey Critzer, Oct 09 2013 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial((n-k)^2+k-1, k))}

(PARI) {a(n)=polcoeff(sum(m=0, n, x^m/(1-x+x*O(x^n))^(m^2)), n)}

(PARI) {a(n)=polcoeff(sum(m=0, n, (x-x^2)^m*prod(k=1, m, ((1-x)^(4*k-3)-x)/((1-x)^(4*k-1)-x +x*O(x^n)))), n)}

CROSSREFS

Cf. A214398, A230050, A227934, A227935.

Sequence in context: A150221 A063689 A058866 * A087649 A328435 A150222

Adjacent sequences:  A178322 A178323 A178324 * A178326 A178327 A178328

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 16:47 EDT 2021. Contains 348233 sequences. (Running on oeis4.)