login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056491
Number of periodic palindromes using exactly five different symbols.
5
0, 0, 0, 0, 0, 0, 0, 60, 120, 960, 1800, 9300, 16800, 71400, 126000, 480060, 834120, 2968560, 5103000, 17355300, 29607600, 97567800, 165528000, 533274060, 901020120, 2855012160, 4809004200, 15050517300, 25292030400, 78417448200, 131542866000, 404936532060
OFFSET
1,8
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,14,-14,-71,71,154,-154,-120, 120).
FORMULA
a(n) = 2*A056345(n) - A056285(n).
G.f.: -60*x^8*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). - Colin Barker, Jul 08 2012
a(n) = (k!/2)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), with k=5 different colors used and where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, Jun 05 2018
a(n) = a(n-1) + 14*a(n-2) - 14*a(n-3) - 71*a(n-4) + 71*a(n-5) + 154*a(n-6) - 154*a(n-7) - 120*a(n-8) + 120*a(n-9). - Muniru A Asiru, Sep 26 2018
EXAMPLE
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
There are 120 permutations of the five letters used in ABACDEDC. These 120 arrangements can be paired up with a half turn (e.g., ABACDEDC-DEDCABAC) to arrive at the 60 arrangements for n=8. - Robert A. Russell, Sep 26 2018
MAPLE
with(combinat): a:=n->(factorial(5)/2)*(Stirling2(floor((n+1)/2), 5)+Stirling2(ceil((n+1)/2), 5)): seq(a(n), n=1..35); # Muniru A Asiru, Sep 26 2018
MATHEMATICA
k = 5; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0,
0, 0, 0, 0, 0, 60, 120}, 40] (* Robert A. Russell, Sep 29 2018 *)
PROG
(PARI) a(n) = my(k=5); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
(GAP) a:=[0, 0, 0, 0, 0, 0, 0, 60, 120];; for n in [10..35] do a[n]:=a[n-1]+14*a[n-2]-14*a[n-3]-71*a[n-4]+71*a[n-5]+154*a[n-6]-154*a[n-7]-120*a[n-8]+120*a[n-9]; od; a; # Muniru A Asiru, Sep 26 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(-60*x^8*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)))); // G. C. Greubel, Oct 13 2018
CROSSREFS
Cf. A056456.
Column 5 of A305540.
Sequence in context: A275339 A049058 A056501 * A044247 A044628 A181190
KEYWORD
nonn,easy
STATUS
approved