login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056456
Number of palindromes of length n using exactly five different symbols.
8
0, 0, 0, 0, 0, 0, 0, 0, 120, 120, 1800, 1800, 16800, 16800, 126000, 126000, 834120, 834120, 5103000, 5103000, 29607600, 29607600, 165528000, 165528000, 901020120, 901020120, 4809004200, 4809004200, 25292030400
OFFSET
1,9
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,14,-14,-71,71,154,-154,-120,120).
FORMULA
a(n) = 5! * Stirling2( [(n+1)/2], 5).
G.f.: -120*x^9/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). - Colin Barker, Sep 03 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=5 is the number of symbols. - Robert A. Russell, Sep 25 2018
MATHEMATICA
k=5; Table[k! StirlingS2[Ceiling[n/2], k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0, 0, 0, 0, 0, 0, 0, 120}, 30] (* Vincenzo Librandi, Sep 29 2018 *)
PROG
(PARI) a(n) = 5!*stirling((n+1)\2, 5, 2); \\ Altug Alkan, Sep 25 2018
CROSSREFS
Sequence in context: A332560 A334571 A056466 * A239535 A085218 A296884
KEYWORD
nonn,easy
STATUS
approved