login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of palindromes of length n using exactly five different symbols.
8

%I #28 Oct 13 2018 09:27:25

%S 0,0,0,0,0,0,0,0,120,120,1800,1800,16800,16800,126000,126000,834120,

%T 834120,5103000,5103000,29607600,29607600,165528000,165528000,

%U 901020120,901020120,4809004200,4809004200,25292030400

%N Number of palindromes of length n using exactly five different symbols.

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

%H Vincenzo Librandi, <a href="/A056456/b056456.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,14,-14,-71,71,154,-154,-120,120).

%F a(n) = 5! * Stirling2( [(n+1)/2], 5).

%F G.f.: -120*x^9/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). - _Colin Barker_, Sep 03 2012

%F G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=5 is the number of symbols. - _Robert A. Russell_, Sep 25 2018

%t k=5; Table[k! StirlingS2[Ceiling[n/2],k],{n,1,30}] (* _Robert A. Russell_, Sep 25 2018 *)

%t LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0, 0, 0, 0, 0, 0, 0, 120}, 30] (* _Vincenzo Librandi_, Sep 29 2018 *)

%o (PARI) a(n) = 5!*stirling((n+1)\2, 5, 2); \\ _Altug Alkan_, Sep 25 2018

%Y Cf. A056451, A001118.

%K nonn,easy

%O 1,9

%A _Marks R. Nester_