login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056453 Number of palindromes of length n using exactly two different symbols. 15
0, 0, 2, 2, 6, 6, 14, 14, 30, 30, 62, 62, 126, 126, 254, 254, 510, 510, 1022, 1022, 2046, 2046, 4094, 4094, 8190, 8190, 16382, 16382, 32766, 32766, 65534, 65534, 131070, 131070, 262142, 262142, 524286, 524286, 1048574, 1048574, 2097150, 2097150, 4194302 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also the number of bitstrings of length n+2 where the last two runs have the same length.  (A run is a maximal subsequence of (possibly just one) identical bits.) - David Nacin, Mar 03 2012

Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Apr 22 2017

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..2000

Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Wolfram Research, Wolfram Atlas of Simple Programs

Index entries for sequences related to cellular automata

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

Index entries for linear recurrences with constant coefficients, signature (1,2,-2).

FORMULA

a(n) = 2^floor((n+1)/2) - 2.

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3). - David Nacin, Mar 03 2012

G.f.: 2*x^3/((1-x)*(1-2*x^2)). - David Nacin, Mar 03 2012

G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=2 is the number of symbols. - Robert A. Russell, Sep 25 2018

a(n) = k! S2(ceiling(n/2),k), where k=2 is the number of symbols and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018

EXAMPLE

The palindromes in two symbols of length three take the forms 000, 111, 010, 101. Of these only two have exactly two symbols.  Thus a(3) = 2. - David Nacin, Mar 03 2012

MATHEMATICA

Table[2^(Floor[n/2] + 1) - 2, {n, 0, 40}] (* David Nacin, Mar 03 2012 *)

LinearRecurrence[{1, 2, -2}, {0, 0, 2}, 40] (* David Nacin, Mar 03 2012 *)

k=2; Table[k! StirlingS2[Ceiling[n/2], k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)

PROG

(MAGMA) [2^Floor((n+1)/2)-2: n in [1..40]]; // Vincenzo Librandi, Aug 16 2011

(PARI) a(n) = 2^((n+1)\2)-2; \\ Altug Alkan, Sep 25 2018

CROSSREFS

Cf. A016116, A000918, A208900, A208901, A208902, A208903.

Sequence in context: A288302 A286409 A285610 * A244486 A309800 A306007

Adjacent sequences:  A056450 A056451 A056452 * A056454 A056455 A056456

KEYWORD

nonn,easy

AUTHOR

Marks R. Nester

EXTENSIONS

More terms from Vincenzo Librandi, Aug 16 2011

Name clarified by Michel Marcus and Felix Fröhlich, Jul 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 02:29 EDT 2021. Contains 348141 sequences. (Running on oeis4.)