|
|
A056453
|
|
Number of palindromes of length n using exactly two different symbols.
|
|
15
|
|
|
0, 0, 2, 2, 6, 6, 14, 14, 30, 30, 62, 62, 126, 126, 254, 254, 510, 510, 1022, 1022, 2046, 2046, 4094, 4094, 8190, 8190, 16382, 16382, 32766, 32766, 65534, 65534, 131070, 131070, 262142, 262142, 524286, 524286, 1048574, 1048574, 2097150, 2097150, 4194302
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Also the number of bitstrings of length n+2 where the last two runs have the same length. (A run is a maximal subsequence of (possibly just one) identical bits.) - David Nacin, Mar 03 2012
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Apr 22 2017
|
|
REFERENCES
|
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2^floor((n+1)/2) - 2.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3). - David Nacin, Mar 03 2012
G.f.: 2*x^3/((1-x)*(1-2*x^2)). - David Nacin, Mar 03 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=2 is the number of symbols. - Robert A. Russell, Sep 25 2018
a(n) = k! S2(ceiling(n/2),k), where k=2 is the number of symbols and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018
E.g.f.: 1 - 2*cosh(x) + cosh(sqrt(2)*x) - 2*sinh(x) + sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Jun 06 2023
|
|
EXAMPLE
|
The palindromes in two symbols of length three take the forms 000, 111, 010, 101. Of these only two have exactly two symbols. Thus a(3) = 2. - David Nacin, Mar 03 2012
|
|
MATHEMATICA
|
Table[2^(Floor[n/2] + 1) - 2, {n, 0, 40}] (* David Nacin, Mar 03 2012 *)
LinearRecurrence[{1, 2, -2}, {0, 0, 2}, 40] (* David Nacin, Mar 03 2012 *)
k=2; Table[k! StirlingS2[Ceiling[n/2], k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
|
|
PROG
|
(PARI) a(n) = 2^((n+1)\2)-2; \\ Altug Alkan, Sep 25 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|