OFFSET
1,1
COMMENTS
A run is a maximal subsequence of (possibly just one) identical bits.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
FORMULA
a(n) = 2^n + 2 - 2^(floor(n/2)+1).
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4), a(0) = 2, a(1) = 2, a(2) = 6, a(3) = 10.
G.f.: x*(2 - 4*x + 4*x^3)/((1-x)*(1-2*x^2)*(1-2*x)).
E.g.f.: - 2*cosh(sqrt(2)*x) + 2*exp(x)*(1 + sinh(x)) - sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Jun 06 2023
EXAMPLE
If n=3 the bitstrings where the last runs have different lengths are 111,000,100,011,110,001 so a(3) = 6.
MATHEMATICA
Table[2 + 2^n - 2^(Floor[n/2] + 1) , {n, 1, 40}]
LinearRecurrence[{3, 0, -6, 4}, {2, 2, 6, 10}, 40]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David Nacin, Mar 03 2012
STATUS
approved