login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309800
Sum of the even parts appearing among the largest parts of the partitions of n into 4 parts.
0
0, 0, 0, 0, 0, 2, 2, 6, 6, 14, 18, 32, 38, 62, 72, 104, 122, 170, 200, 264, 302, 388, 444, 554, 628, 768, 866, 1036, 1160, 1376, 1532, 1788, 1976, 2280, 2518, 2880, 3160, 3590, 3920, 4410, 4802, 5374, 5838, 6492, 7018, 7766, 8378, 9224, 9922, 10878, 11674
OFFSET
0,6
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (n-i-j-k) * ((n-i-j-k-1) mod 2).
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 6 14 18 32 38 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 07 2019
MATHEMATICA
Table[Sum[Sum[Sum[(n - i - j - k)*Mod[n - i - j - k - 1, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
CROSSREFS
Sequence in context: A285610 A056453 A244486 * A306007 A287603 A034422
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 17 2019
STATUS
approved