login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309801
If 2*n = Sum (2^e_k) then a(n) = Sum (e_k^n).
0
1, 4, 9, 81, 244, 793, 2316, 65536, 262145, 1049600, 4196353, 17308657, 68703188, 273234809, 1088123500, 152587890625, 762939453126, 3814697527769, 19073486852414, 95370918425026, 476847618556329, 2384217176269538, 11921023106645561, 59886119752101281
OFFSET
1,2
COMMENTS
Replace 2^k with (k + 1)^n in binary representation of n.
FORMULA
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (k + 1)^n*x^(2^k)/(1 + x^(2^k)).
EXAMPLE
14 = 2*7 = 2^1 + 2^2 + 2^3 so a(7) = 1^7 + 2^7 + 3^7 = 2316.
MATHEMATICA
Table[Reverse[#].Range[Length[#]]^n &@IntegerDigits[n, 2], {n, 1, 24}]
Table[SeriesCoefficient[1/(1 - x) Sum[(k + 1)^n x^2^k/(1 + x^2^k), {k, 0, Floor[Log[2, n]] + 1}], {x, 0, n}], {n, 1, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 17 2019
STATUS
approved