login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309798
Sum of the odd parts appearing among the largest parts of the partitions of n into 4 parts.
2
0, 0, 0, 0, 1, 0, 3, 3, 11, 11, 23, 25, 46, 50, 82, 93, 140, 155, 214, 242, 327, 363, 471, 524, 661, 733, 901, 998, 1210, 1325, 1576, 1731, 2038, 2226, 2582, 2811, 3233, 3505, 3997, 4329, 4901, 5284, 5927, 6384, 7132, 7652, 8496, 9100, 10052, 10744, 11808
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (n-i-j-k) * ((n-i-j-k) mod 2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-7) + 4*a(n-8) - 6*a(n-9) + 6*a(n-10) - 6*a(n-11) + 5*a(n-12) - 4*a(n-13) + 4*a(n-15) - 5*a(n-16) + 6*a(n-17) - 6*a(n-18) + 6*a(n-19) - 4*a(n-20) + 2*a(n-21) - 2*a(n-23) + 2*a(n-24) - 2*a(n-25) + 2*a(n-26) - 2*a(n-27) + a(n-28) for n > 27.
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 11 11 23 25 46 ...
--------------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Sum[(n - i - j - k)*Mod[n - i - j - k, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}] (* Wesley Ivan Hurt, or: *)
LinearRecurrence[{2, -2, 2, -2, 2, 0, -2, 4, -6, 6, -6, 5, -4, 0, 4, -5, 6, -6, 6, -4, 2, 0, -2,
2, -2, 2, -2, 1}, {0, 0, 0, 0, 1, 0, 3, 3, 11, 11, 23, 25, 46, 50, 82, 93, 140, 155, 214, 242, 327, 363, 471, 524, 661, 733, 901, 998}, 51] (* Georg Fischer, Nov 07 2019 *)
CROSSREFS
Sequence in context: A321082 A167428 A318961 * A068594 A147175 A147112
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 17 2019
STATUS
approved