login
A327873
Irregular triangle read by rows: T(n,k) is the number of length n primitive (aperiodic) palindromes using exactly k different symbols, 1 <= k <= ceiling(n/2).
8
1, 0, 0, 2, 0, 2, 0, 6, 6, 0, 4, 6, 0, 14, 36, 24, 0, 12, 36, 24, 0, 28, 150, 240, 120, 0, 24, 144, 240, 120, 0, 62, 540, 1560, 1800, 720, 0, 54, 534, 1560, 1800, 720, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 112, 1770, 8376, 16800, 15120, 5040
OFFSET
1,4
LINKS
FORMULA
T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A284823(n,j).
T(n,k) = Sum_{d|n} mu(n/d)*k!*Stirling2(ceiling(d/2), k).
EXAMPLE
Triangle begins:
1;
0;
0, 2;
0, 2;
0, 6, 6;
0, 4, 6;
0, 14, 36, 24;
0, 12, 36, 24;
0, 28, 150, 240, 120;
0, 24, 144, 240, 120;
0, 62, 540, 1560, 1800, 720;
0, 54, 534, 1560, 1800, 720;
0, 126, 1806, 8400, 16800, 15120, 5040;
0, 112, 1770, 8376, 16800, 15120, 5040;
...
PROG
(PARI) T(n, k) = {sumdiv(n, d, moebius(n/d)*k!*stirling(ceil(d/2), k, 2))}
CROSSREFS
Columns k=2..6 are A056463, A056464, A056465, A056466, A056467.
Row sums are A327874.
Sequence in context: A175950 A339423 A066285 * A136665 A047765 A068463
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Sep 28 2019
STATUS
approved