The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327871 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (-1,1), and (1,-1) with the restriction that (-1,1) and (1,-1) are always immediately followed by (0,1). 2
 1, 1, 3, 14, 70, 369, 2002, 11076, 62127, 352070, 2010998, 11559030, 66780155, 387444085, 2255875650, 13174629240, 77143234950, 452738296890, 2662359410158, 15683996769460, 92540962166016, 546799192200261, 3235027635603828, 19161631961190036, 113617798289197650 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1280 Alois P. Heinz, Animation of a(5) = 369 walks Wikipedia, Lattice path Wikipedia, Self-avoiding walk FORMULA a(n) ~ sqrt(5 + 1/sqrt(13)) * (70 + 26*sqrt(13))^n / (2^(3/2) * sqrt(Pi*n) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Oct 12 2019 MAPLE b:= proc(x, y, t) option remember; `if`(min(x, y)<0, 0,       `if`(max(x, y)=0, 1, b(x-1, y, 1)+       `if`(t=1, b(x-1, y+1, 0)+b(x+1, y-1, 0), 0)))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..25); MATHEMATICA b[x_, y_, t_] := b[x, y, t] = If[Min[x, y] < 0, 0, If[Max[x, y]==0, 1, b[x - 1, y, 1] + If[t==1, b[x - 1, y + 1, 0] + b[x + 1, y - 1, 0], 0]]]; a[n_] := b[n, n, 0]; a /@ Range[0, 25] (* Jean-François Alcover, May 13 2020, after Maple *) CROSSREFS Cf. A001006, A086246, A327872. Sequence in context: A161939 A270598 A001579 * A006772 A320421 A009020 Adjacent sequences:  A327868 A327869 A327870 * A327872 A327873 A327874 KEYWORD nonn,walk AUTHOR Alois P. Heinz, Sep 28 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 18:17 EDT 2021. Contains 343986 sequences. (Running on oeis4.)