login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298605
T(n,k) is 1/(k-1)! times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1
1, 0, 2, 0, 3, 3, 0, 8, 12, 4, 0, 10, 85, 30, 5, 0, 54, 450, 330, 60, 6, 0, -42, 3283, 3255, 910, 105, 7, 0, 944, 22036, 37352, 12740, 2072, 168, 8, 0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9, 0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Power Tower
Wikipedia, Tetration
FORMULA
T(n,k) = n!/(k-1)! * [x^n] ((x+1)^^k - (x+1)^^(k-1)).
T(n,k) = 1/(k-1)! * [(d/dx)^n (x^^k - x^^(k-1))]_{x=1}.
T(n,k) = 1/(k-1)! * A277536(n,k).
T(n,k) = n/(k-1)! * A295027(n,k).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 2;
0, 3, 3;
0, 8, 12, 4;
0, 10, 85, 30, 5;
0, 54, 450, 330, 60, 6;
0, -42, 3283, 3255, 910, 105, 7;
0, 944, 22036, 37352, 12740, 2072, 168, 8;
0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9;
0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10;
...
MAPLE
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!/(k-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..10);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/(k-1)!:
seq(seq(T(n, k), k=1..n), n=1..10);
MATHEMATICA
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!/(k - 1)!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten
(* Second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n-1, j]* b[j, k]*Sum[Binomial[n - j, i]* (-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k-1, n]]])/(k-1)!;
Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
CROSSREFS
Columns k=1-2 give: A063524, A005727 (for n>1).
Main diagonal gives A000027.
Sequence in context: A134409 A327878 A337841 * A180013 A377657 A094067
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Jan 22 2018
STATUS
approved