login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124724
a(n) = (4/(n + 1)) * C(5*n, n).
8
4, 10, 60, 455, 3876, 35420, 339300, 3362260, 34179860, 354465254, 3735373880, 39884521950, 430571952300, 4691735290080, 51534335175776, 570003171679020, 6343110854237300, 70968228417131850, 797820661622862900
OFFSET
0,1
COMMENTS
a(n) is the total number of down steps between the first and second up steps in all 4-Dyck paths of length 5*(n+1). A 4-Dyck path is a nonnegative lattice path with steps (1,4), (1,-1) that starts and ends at y = 0. - Sarah Selkirk, May 07 2020
LINKS
A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Fabio Deelan Cunden, Marilena Ligabò, and Tommaso Monni, Random matrices associated to Young diagrams, arXiv:2301.13555 [math.PR], 2023. See p. 7.
N. S. S. Gu, H. Prodinger, and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732; see Theorem 2 with k = 4.
FORMULA
a(n) = C(5*n, n)/(4*n + 1) + 2*C(5*n + 1, n)/(4*n + 2) + 3*C(5*n + 2, n)/(4*n + 3) + 4*C(5*n + 3, n)/(4*n + 4).
MATHEMATICA
Array[(4/(# + 1))*Binomial[5 #, #] &, 28, 0] (* Michael De Vlieger, Apr 12 2023 *)
PROG
(PARI) a(n) = (4/(n+1)) * binomial(5*n, n); \\ Michel Marcus, May 08 2020
CROSSREFS
Sequence in context: A328155 A209030 A220824 * A362705 A323870 A298162
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 05 2006
STATUS
approved