Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 24 2022 10:15:21
%S 1,1,2,4,11,32,113,422,1788,8015,39435,204910,1144377,6722107,
%T 41877722,273328660,1875326627,13427171644,100415636519,780856389454,
%U 6312398830812,52891894374481,459022366424253,4117482357137214,38140612800271305,364280428671552453,3584042687233836274
%N Number of partitions of an n-set without blocks of size 3.
%H Alois P. Heinz, <a href="/A124504/b124504.txt">Table of n, a(n) for n = 0..500</a>
%F E.g.f.: exp(exp(x)-1-x^3/6).
%F a(n) = A124503(n,0).
%e a(3)=4 because if the set is {1,2,3}, then we have 1|2|3, 1|23, 12|3 and 13|2.
%p G:=exp(exp(x)-1-x^3/6): Gser:=series(G,x=0,30): seq(n!*coeff(Gser,x,n),n=0..26);
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n=0, 1, add(
%p `if`(j=3, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 08 2015, revised, Jun 24 2022
%t a[n_] := SeriesCoefficient[Exp[Exp[x]-1-x^3/6], {x, 0, n}]*n!; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 13 2015 *)
%o (PARI) x='x+O('x^66); Vec(serlaplace( exp(exp(x)-1-x^3/6) ) ) \\ _Joerg Arndt_, Jan 19 2015
%Y Cf. A124503, A328153.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Nov 14 2006