login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled mobiles (cycle rooted trees) with n generators.
3

%I #15 Aug 11 2014 22:45:27

%S 1,3,20,229,3764,80383,2107412,65436033,2347211812,95492023811,

%T 4344109422388,218499395486909,12039757564700644,721239945304498215,

%U 46669064731537444820,3243864647191662324601,241046155271316751794596

%N Number of labeled mobiles (cycle rooted trees) with n generators.

%C A generator is a leaf or a node with just one child.

%H Vaclav Kotesovec, <a href="/A108527/b108527.txt">Table of n, a(n) for n = 1..250</a>

%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>

%F E.g.f. satisfies: (2-x)*A(x) = x - 1 - log(1-A(x)).

%F a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.20846306198165450115960050053484328028... and c = 0.3060161306524907981116283162103879... - _Vaclav Kotesovec_, Mar 28 2014

%t nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!,{k,0,nmax}]; Array[c,nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x],{x,0,nmax}],x]]==0][[1]] (* _Vaclav Kotesovec_, Mar 28 2014 *)

%o (PARI) {a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}

%o for(n=1, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Mar 28 2014

%Y Cf. A108521-A108529, A038037, A032188.

%K nonn

%O 1,2

%A _Christian G. Bower_, Jun 07 2005