

A294601


Numbers with exactly one odd decimal digit.


1



1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 120, 122, 124, 126, 128, 140, 142, 144, 146, 148, 160, 162, 164, 166, 168, 180
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

First differs from A054684 at position 56.
Numbers n such that A196564(n) = 1.  Felix Fröhlich, Nov 03 2017
There are (1+4*d)*5^(d1) = 5*A081040(d+1) terms with d digits.  Robert Israel, Nov 06 2017


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


MAPLE

Res:= NULL:
for t from 0 to 1000 do
if nops(select(type, convert(t, base, 10), odd))=1 then Res:= Res, t fi
od:
Res;


MATHEMATICA

Select[Range@ 200, Count[IntegerDigits@ #, _?OddQ] == 1 &] (* Michael De Vlieger, Nov 03 2017 *)


PROG

(PARI) a196564(n) = #select(x>x%2, digits(n)) \\ after Michel Marcus
is(n) = a196564(n)==1 \\ Felix Fröhlich, Nov 03 2017


CROSSREFS

Cf. A014263, A054684, A081040, A196564, A275775.
Sequence in context: A308412 A327254 A054684 * A080207 A187347 A187413
Adjacent sequences: A294598 A294599 A294600 * A294602 A294603 A294604


KEYWORD

nonn,base,look


AUTHOR

Robert Israel, Nov 03 2017


STATUS

approved



