login
A308412
Indices of Gaussian primes on a square spiral.
3
3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 60, 62, 68, 70, 76, 78, 82, 84, 88, 90, 92, 94, 98, 100, 102, 104, 108, 110, 112, 114, 118, 120, 122, 126, 128, 132, 134, 138, 140, 144, 146, 150, 152, 156, 158
OFFSET
1,1
COMMENTS
These are the numbers k > 0 such that A174344(k) + i*A274923(k) is a Gaussian prime (where i denotes the imaginary unit).
For symmetry reasons, we obtain the same sequence when considering a clockwise or a counterclockwise square spiral, or when initially moving towards any unit direction.
All terms except the first four are even.
LINKS
Eric Weisstein's World of Mathematics, Gaussian Prime
EXAMPLE
The first terms displayed on the center of a counterclockwise square spiral are:
y\x| -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
---+--------------------------------------------------------
+5| *--100----*---98----*----*----*---94----*---92----*
| | |
+4| 102 *----*----*---62----*---60----*----*----* 90
| | | | |
+3| * * *---36----*---34----*---32----* * *
| | | | | | |
+2| 104 * 38 *---16----*---14----* 30 * 88
| | | | | | | | |
+1| * 68 * 18 5----*----3 12 * 54 *
| | | | | | | | | | |
0| * * 40 * * *----* * 28 * *
| | | | | | | | | |
-1| * 70 * 20 7----*----9---10 * 52 *
| | | | | | | |
-2| 108 * 42 *---22----*---24----*---26 * 84
| | | | | |
-3| * * *---44----*---46----*---48----*----* *
| | | |
4| 110 *----*----*---76----*---78----*----*----*---82
| |
5| *--112----*--114----*----*----*--118----*--120----*
MAPLE
SP:= proc(n) option remember; local k;
k:=floor(sqrt(4*n-7)) mod 4;
procname(n-1) -I*exp(I*k*Pi/2)
end proc:
SP(1):= 0:
select(i -> GaussInt:-GIprime(SP(i)), [$1..1000]); # Robert Israel, May 20 2024
PROG
(PARI) \\ See Links section.
CROSSREFS
Sequence in context: A214315 A249098 A287774 * A327254 A054684 A294601
KEYWORD
nonn,changed
AUTHOR
Rémy Sigrist, Jun 01 2019
STATUS
approved