OFFSET
1,1
COMMENTS
These are the numbers k > 0 such that A174344(k) + i*A274923(k) is a Gaussian prime (where i denotes the imaginary unit).
For symmetry reasons, we obtain the same sequence when considering a clockwise or a counterclockwise square spiral, or when initially moving towards any unit direction.
All terms except the first four are even.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Rémy Sigrist, PARI program for A308412
Eric Weisstein's World of Mathematics, Gaussian Prime
EXAMPLE
The first terms displayed on the center of a counterclockwise square spiral are:
y\x| -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
---+--------------------------------------------------------
+5| *--100----*---98----*----*----*---94----*---92----*
| | |
+4| 102 *----*----*---62----*---60----*----*----* 90
| | | | |
+3| * * *---36----*---34----*---32----* * *
| | | | | | |
+2| 104 * 38 *---16----*---14----* 30 * 88
| | | | | | | | |
+1| * 68 * 18 5----*----3 12 * 54 *
| | | | | | | | | | |
0| * * 40 * * *----* * 28 * *
| | | | | | | | | |
-1| * 70 * 20 7----*----9---10 * 52 *
| | | | | | | |
-2| 108 * 42 *---22----*---24----*---26 * 84
| | | | | |
-3| * * *---44----*---46----*---48----*----* *
| | | |
4| 110 *----*----*---76----*---78----*----*----*---82
| |
5| *--112----*--114----*----*----*--118----*--120----*
MAPLE
SP:= proc(n) option remember; local k;
k:=floor(sqrt(4*n-7)) mod 4;
procname(n-1) -I*exp(I*k*Pi/2)
end proc:
SP(1):= 0:
select(i -> GaussInt:-GIprime(SP(i)), [$1..1000]); # Robert Israel, May 20 2024
PROG
(PARI) \\ See Links section.
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Rémy Sigrist, Jun 01 2019
STATUS
approved