login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322427
Sum T(n,k) of k-th smallest parts of all compositions of n; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
4
1, 3, 1, 6, 5, 1, 12, 12, 7, 1, 22, 28, 20, 9, 1, 42, 54, 54, 30, 11, 1, 79, 106, 115, 92, 42, 13, 1, 151, 200, 239, 218, 144, 56, 15, 1, 291, 376, 471, 486, 378, 212, 72, 17, 1, 566, 708, 904, 1014, 908, 612, 298, 90, 19, 1, 1106, 1346, 1709, 2030, 2014, 1584, 939, 404, 110, 21, 1
OFFSET
1,2
LINKS
EXAMPLE
The 4 compositions of 3 are: 111, 12, 21, 3. The sums of k-th smallest parts for k=1..3 give: 1+1+1+3 = 6, 1+2+2+0 = 5, 1+0+0+0 = 1.
Triangle T(n,k) begins:
1;
3, 1;
6, 5, 1;
12, 12, 7, 1;
22, 28, 20, 9, 1;
42, 54, 54, 30, 11, 1;
79, 106, 115, 92, 42, 13, 1;
151, 200, 239, 218, 144, 56, 15, 1;
291, 376, 471, 486, 378, 212, 72, 17, 1;
566, 708, 904, 1014, 908, 612, 298, 90, 19, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, add(l[i]*x^i,
i=1..nops(l)), add(b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, [])):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[i]] x^i, {i, 1, Length[l]}], Sum[b[n - j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, {}]];
Array[T, 12] // Flatten (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives A097939.
Row sums give A001787.
Cf. A322428.
Sequence in context: A153641 A133545 A210214 * A209149 A343062 A210602
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 07 2018
STATUS
approved