OFFSET
0,3
COMMENTS
a(n) = A191791(n,0).
FORMULA
G.f.: g(z)=C/(1-z*C), where C=C(z) is given by z^2*(1+z^2)*C^2-(1+z^2+z^4)*C+1+z^2=0.
Conjecture D-finite with recurrence (n+1)*a(n) -2*a(n-1) +2*(-n+1)*a(n-2) +4*(-1)*a(n-3) +5*(-n+3)*a(n-4) +4*a(n-5) +2*(-n+5)*a(n-6) +2*a(n-7) +(n-7)*a(n-8)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(4)=5 because we have UDUU, UUDD, UUDU, UUUD, and UUUU, where U=(1,1) and D=(1,-1) (the path UDUD does not qualify).
MAPLE
eq := z^2*(1+z^2)*C^2-(1+z^2+z^4)*C+1+z^2 = 0: C := RootOf(eq, C): g := C/(1-z*C): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n = 0 .. 38);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved