login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082095 A 2nd order recursion: a(1)=a(2)=1, a(n) = prime(a(n-2)) + pi(a(n-1)) = A000040(a(n-2)) + A000720(a(n-1)). 3
1, 1, 2, 3, 5, 8, 15, 25, 56, 113, 293, 679, 2036, 5389, 18447, 54920, 211347, 697252, 2974827, 10741681, 50245401, 196570892, 998427899, 4197026430, 22963115248, 103007695615, 603032992418, 2870053925682, 17876478098333, 89829672327175, 592418610490868, 3129958832408526, 21764504060699104, 120464619408398977, 880014298908322768, 5086633622697900677 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..36.

MATHEMATICA

a[n_]:= a[n]= If[n<4, Fibonacci[n], Prime[a[n-2]] +PrimePi[a[n-1]]]; Table[a[n], {n, 30}] (* modified by G. C. Greubel, Aug 30 2019 *)

nxt[{a_, b_}]:={b, Prime[a]+PrimePi[b]}; NestList[nxt, {1, 1}, 30][[All, 1]] (* The program generates the first 31 terms of the sequence. *) (* Harvey P. Dale, May 16 2020 *)

PROG

(PARI) a(n) = if (n<3, 1, prime(a(n-2)) + primepi(a(n-1))); \\ Michel Marcus, Aug 30 2019

(PARI) first(n) = {my(res = vector(max(3, n)), pr = vector(n)); res[1] = res[2] = 1; res[3] = 2; for(i = 1, 3, print1(res[i]", ")); pr[1] = pr[2] = 2; pr[3] = 3; for(i = 4, n, pr[i] = prime(res[i-2]); res[i] = pr[i] + res[i-3] + primedist(pr[i-1], res[i-1]); print1(res[i]", ")); res}

primedist(p1, p2) = {my(res = 0); forprime(p = p1 + 1, p2, res++); res} \\ David A. Corneth, Aug 30 2019

(MAGMA) f:= func< n | n lt 4 select Fibonacci(n) else NthPrime(Self(n-2)) + #PrimesUpTo(Self(n-1)) >;

[f(n): n in [1..25]]; // G. C. Greubel, Aug 30 2019

CROSSREFS

Cf. A000040, A000720, A069103, A082094.

Sequence in context: A282239 A191792 A151518 * A177486 A006982 A054539

Adjacent sequences:  A082092 A082093 A082094 * A082096 A082097 A082098

KEYWORD

nonn

AUTHOR

Labos Elemer, Apr 11 2003

EXTENSIONS

a(26) from David A. Corneth, Aug 30 2019

a(27)-a(30) from G. C. Greubel, Aug 30 2019

a(31)-a(36) from Chai Wah Wu, Sep 18 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 13:49 EDT 2020. Contains 336198 sequences. (Running on oeis4.)