Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 31 2019 17:33:45
%S 1,2,1,2,4,4,7,10,11,16,21,24,34,44,50,66,84,98,125,156,181,226,277,
%T 322,397,480,557,674,807,936,1121,1330,1538,1824,2146,2476,2915,3408,
%U 3918,4578,5322,6104,7090,8198,9375,10830,12464,14214,16345,18734,21303
%N Expansion of (chi(x) / chi(-x^6))^2 in powers of x where chi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Convolution square of A328796.
%C G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328797.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of q^(-5/12) * (eta(q^2)^2 * eta(q^12))^2 / (eta(q) * eta(q^4) * eta(q^6))^2 in power of q.
%F Euler transform of period 12 sequence [2, -2, 2, 0, 2, 0, 2, 0, 2, -2, 2, 0, ...].
%F G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 + x^(6*k))^2.
%F a(n) = A112206(2*n + 1).
%F a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Oct 31 2019
%e G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 10*x^7 + ...
%e G.f. = q^5 + 2*q^17 + q^29 + 2*q^41 + 4*q^53 + 4*q^65 + 7*q^77 + ...
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6])^2, {x, 0, n}];
%o (PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A))^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
%Y Cf. A112206, A328796, A328797.
%K nonn
%O 0,2
%A _Michael Somos_, Oct 27 2019