Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 28 2019 21:11:30
%S 1,1,0,2,2,1,2,2,3,4,4,4,7,7,6,10,11,11,14,16,17,21,22,24,32,34,34,44,
%T 49,50,60,66,72,84,90,98,117,125,132,156,171,181,206,226,245,277,298,
%U 322,369,397,422,480,522,557,620,674,728,807,868,936,1043,1121,1198
%N Coefficients of replicable function number "72b".
%C From _Michael Somos_, Oct 28 2019: (Start)
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Convolution squared is A112173.
%C G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = f(t) where q = exp(2 Pi i t).
%C Given G.f. A(x), then B(q) = q^(-1) * A(q^6) satisifes 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 2 + (u^2 - v)*v*w^2 + (u^2 + v)*v^2.
%C (End)
%H G. C. Greubel, <a href="/A112206/b112206.txt">Table of n, a(n) for n = 0..1000</a>
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(5/4) * sqrt(3) * n^(3/4)). - _Vaclav Kotesovec_, Sep 08 2015
%F Expansion of q^(1/6)*((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))) in powers of q. - _G. C. Greubel_, Jun 01 2018
%F From _Michael Somos_, Oct 28 2019: (Start)
%F Expansion of chi(x) * chi(x^3) in powers of x where chi() is a Ramanujan theta function.
%F Euler transform of period 12 sequence [1, -1, 2, 0, 1, -2, 1, 0, 2, -1, 1, 0, ...].
%F G.f.: Product_{k>=0} (1 + x^(2*k + 1)) * (1 + x^(6*k + 3)).
%F a(n) = (-1)^n * A112175(n). a(2*n) = A328789(n). a(2*n + 1) = A328790(n).
%F (End)
%e G.f. = 1 + x + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + ...
%e G.f. = q^-1 + q^5 + 2*q^17 + 2*q^23 + q^29 + 2*q^35 + 2*q^41 + ...
%t nmax = 60; CoefficientList[Series[Product[(1 + x^k)*(1 + x^(3*k)) / ((1 + x^(2*k))*(1 + x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 08 2015 *)
%t eta[q_]:= q^(1/24)*QPochhammer[q]; h:= q^(1/6)*((eta[q^2]*eta[q^6])^2/(eta[q]*eta[q^3]*eta[q^4]*eta[q^12])); a:= CoefficientList[Series [h, {q,0,60}], q]; Table[a[[n]], {n,1,50}] (* _G. C. Greubel_, Jun 01 2018 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^3, x^6], {x, 0 ,n}]; (* _Michael Somos_, Oct 28 2019 *)
%o (PARI) q='q+O('q^50); h=((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))); Vec(h) \\ _G. C. Greubel_, Jun 01 2018
%o (PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))}; /* _Michael Somos_, Oct 28 2019 */
%Y Cf. A112173, A112175, A328789, A328790.
%K nonn
%O 0,4
%A _Michael Somos_, Aug 28 2005