login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058570
McKay-Thompson series of class 23A for Monster.
2
1, 0, 4, 7, 13, 19, 33, 47, 74, 106, 154, 214, 307, 417, 575, 772, 1045, 1379, 1837, 2394, 3135, 4048, 5232, 6686, 8560, 10840, 13737, 17273, 21701, 27086, 33783, 41890, 51893, 63969, 78748, 96536, 118196, 144146, 175561, 213122, 258327, 312202
OFFSET
-1,3
COMMENTS
Also, McKay-Thompson series of class 23B for Monster. - Michel Marcus, Feb 18 2014
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of (F + 1)*(F^2 + 4)/F^2, where F = eta(q)*eta(q^23)/(eta(q^2)* eta(q^46)), in powers of q. - G. C. Greubel, Jun 14 2018
a(n) ~ exp(4*Pi*sqrt(n/23)) / (sqrt(2) * 23^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T23A = 1/q + 4*q + 7*q^2 + 13*q^3 + 19*q^4 + 33*q^5 + 47*q^6 + 74*q^7 + ...
MATHEMATICA
nmax = 50; QP = QPochhammer; s = -x + Sum[x^(2*j^2 + j*k + 3*k^2), {j, -nmax, nmax}, {k, -nmax, nmax}]/(QP[x]*QP[x^23]) + O[x]^nmax; CoefficientList[s, x] (* Jean-François Alcover, Nov 15 2015, adapted from g.f. in A134781 *)
eta[q_] := q^(1/24)*QPochhammer[q]; e46A:= (eta[q]*eta[q^23]/(eta[q^2]* eta[q^46])); a[n_]:= SeriesCoefficient[(e46A + 1)*(4 + e46A^2)/(e46A)^2, {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Feb 13 2018 *)
PROG
(PARI) q='q+O('q^50); F = eta(q)*eta(q^23)/(q*eta(q^2)* eta(q^46)); Vec((F+1)*(F^2+4)/F^2) \\ G. C. Greubel, Jun 14 2018
CROSSREFS
Cf. A134781 (same sequence except for n=0).
Sequence in context: A176003 A216880 A144730 * A134781 A127977 A100848
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved