login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134781
McKay-Thompson series of class 23A for the Monster group with a(0) = 1.
2
1, 1, 4, 7, 13, 19, 33, 47, 74, 106, 154, 214, 307, 417, 575, 772, 1045, 1379, 1837, 2394, 3135, 4048, 5232, 6686, 8560, 10840, 13737, 17273, 21701, 27086, 33783, 41890, 51893, 63969, 78748, 96536, 118196, 144146, 175561, 213122, 258327, 312202
OFFSET
-1,3
COMMENTS
A058570(n) = a(n) unless n=0.
LINKS
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
FORMULA
Associated with permutations in Mathieu group M24 of shape (23)(1).
G.f. is Fourier series of a level 23 modular function. f(-1/ (23 t)) = f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u^2 - v) + 2*(u*v * (u + v) + 2*(u^2 + v^2) + 5*u*v + 3*(u + v) + 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2 * (2 - u - w) + v*(9 + 2*(u + w)) + u^2 + u*w + w^2 + 4*(u + w) + 6.
G.f.: (Sum_{j,k} x^(2*j^2 + j*k + 3*k^2)) / (x * Product_{k>0} (1 - x^k) * (1 - x^(23*k))).
a(n) ~ exp(4*Pi*sqrt(n/23)) / (sqrt(2) * 23^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
1/q + 1 + 4*q + 7*q^2 + 13*q^3 + 19*q^4 + 33*q^5 + 47*q^6 + 74*q^7 + ...
MATHEMATICA
nmax = 40; QP = QPochhammer; s = Sum[x^(2*j^2 + j*k + 3*k^2), {j, -nmax, nmax}, {k, -nmax, nmax}]/(QP[x]*QP[x^23]) + O[x]^nmax; CoefficientList[s, x] (* Jean-François Alcover, Nov 15 2015 *)
eta[q_] := q^(1/24)*QPochhammer[q]; e46A := (eta[q]*eta[q^23]/(eta[q^2] *eta[q^46])); T23A := (e46A + 1)*(e46A^2 + 4)/e46A^2; Table[ SeriesCoefficient[1 + T23A, {q, 0, n}], {n, -1, 50}] (* G. C. Greubel, Feb 13 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (1 + 2 * x * Ser(qfrep([4, 1; 1, 6], n, 1))) / (eta(x + A) * eta(x^23 + A)), n))}
CROSSREFS
Convolution with A030199 is A028930.
Sequence in context: A216880 A144730 A058570 * A127977 A100848 A051458
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 12 2007
STATUS
approved