

A134779


Integer coefficients of A(x), where a(n) is the least integer greater than a(n1)+2 such that A(x)^(1/2) has integer coefficients.


2



1, 4, 6, 8, 11, 14, 16, 18, 21, 24, 27, 30, 33, 36, 38, 40, 43, 46, 49, 52, 55, 58, 61, 64, 66, 68, 71, 74, 76, 78, 80, 82, 85, 88, 90, 92, 95, 98, 101, 104, 106, 108, 111, 114, 117, 120, 122, 124, 126, 128, 131, 134, 137, 140, 143, 146, 148, 150, 153, 156, 159, 162, 164
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

If the condition for a(n) is simply to be greater than a(n1) then the sequence is A000027: the natural numbers.
a(n)~5/2*n.


LINKS



MATHEMATICA

a[n_] := a[n] = Block[{k = a[n  1] + 2, s = Sum[ a[i]*x^i, {i, 0, n  1}]}, While[ !IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + k*x^n], {x, 0, n}], x], k++ ]; k]; a[0] = 1; Table[ a[n], {n, 0, 63}]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



