login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 23A for Monster.
2

%I #30 Jun 28 2018 11:08:50

%S 1,0,4,7,13,19,33,47,74,106,154,214,307,417,575,772,1045,1379,1837,

%T 2394,3135,4048,5232,6686,8560,10840,13737,17273,21701,27086,33783,

%U 41890,51893,63969,78748,96536,118196,144146,175561,213122,258327,312202

%N McKay-Thompson series of class 23A for Monster.

%C Also, McKay-Thompson series of class 23B for Monster. - _Michel Marcus_, Feb 18 2014

%H G. C. Greubel, <a href="/A058570/b058570.txt">Table of n, a(n) for n = -1..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of (F + 1)*(F^2 + 4)/F^2, where F = eta(q)*eta(q^23)/(eta(q^2)* eta(q^46)), in powers of q. - _G. C. Greubel_, Jun 14 2018

%F a(n) ~ exp(4*Pi*sqrt(n/23)) / (sqrt(2) * 23^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 28 2018

%e T23A = 1/q + 4*q + 7*q^2 + 13*q^3 + 19*q^4 + 33*q^5 + 47*q^6 + 74*q^7 + ...

%t nmax = 50; QP = QPochhammer; s = -x + Sum[x^(2*j^2 + j*k + 3*k^2), {j, -nmax, nmax}, {k, -nmax, nmax}]/(QP[x]*QP[x^23]) + O[x]^nmax; CoefficientList[s, x] (* _Jean-François Alcover_, Nov 15 2015, adapted from g.f. in A134781 *)

%t eta[q_] := q^(1/24)*QPochhammer[q]; e46A:= (eta[q]*eta[q^23]/(eta[q^2]* eta[q^46])); a[n_]:= SeriesCoefficient[(e46A + 1)*(4 + e46A^2)/(e46A)^2, {q, 0, n}]; Table[a[n], {n,-1,50}] (* _G. C. Greubel_, Feb 13 2018 *)

%o (PARI) q='q+O('q^50); F = eta(q)*eta(q^23)/(q*eta(q^2)* eta(q^46)); Vec((F+1)*(F^2+4)/F^2) \\ _G. C. Greubel_, Jun 14 2018

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%Y Cf. A134781 (same sequence except for n=0).

%K nonn

%O -1,3

%A _N. J. A. Sloane_, Nov 27 2000

%E More terms from _Michel Marcus_, Feb 18 2014