login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058576
McKay-Thompson series of class 24F for Monster.
3
1, 3, 6, 10, 15, 24, 37, 57, 84, 118, 165, 228, 316, 432, 582, 776, 1023, 1344, 1757, 2283, 2946, 3774, 4812, 6108, 7725, 9732, 12204, 15240, 18957, 23508, 29065, 35826, 44022, 53924, 65868, 80256, 97557, 118305, 143118, 172726, 208002, 249972, 299825, 358926, 428844, 511416, 608796
OFFSET
-1,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
G.f. = 1 + 3*x + 6*x^2 + 10*x^3 + 15*x^4 + 24*x^5 + 37*x^6 + 57*x^7 + 84*x^8 + ...
T24F = 1/q + 3*q^3 + 6*q^7 + 10*q^11 + 15*q^15 + 24*q^19 + 37*q^23 + 57*x^27 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; e24F := q^(1/4)*(eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^3; Table[SeriesCoefficient[e24F, {q, 0, n}], {n, 0, 50}] (* G. C. Greubel, Feb 14 2018 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]))^3, {x, 0, n}]; (* Michael Somos, Feb 18 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^3, n))}; /* Michael Somos, Feb 18 2018 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
Terms a(6) onward added by G. C. Greubel, Feb 14 2018
STATUS
approved