login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058575
The sequence S defined in A058562.
3
0, 0, 1, 7, 81, 1311, 27273, 693351, 20830113, 722035503, 28364200569, 1245313236663, 60429110073489, 3211572892464639, 185523138537151977, 11574425593731913479, 775591270444009771137, 55555665263291738684367, 4236182199641241492147801
OFFSET
0,4
FORMULA
E.g.f.: -(1/2)*LambertW(-2/3*exp(-2/3 + 1/3*x)) - 1/3 - x/3. - Vladeta Jovovic, Jun 25 2007
a(n) ~ sqrt(log(3/2)-1/3) * n^(n-1) / (2 * exp(n) * (log(27/8)-1)^n). - Vaclav Kotesovec, Jul 09 2013
MAPLE
spec := [ S, {N=Union(Z, S, P, Q), S=Set(Union(Z, P, Q), card>=2), P=Set(Union(Z, S, Q), card>=2), Q=Set(Union(Z, S, P), card>=2)}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..40)]; # N=A058562, S=A058575
spec:=[S, {S=Set(Union(Z, S, S), card>=2)}, labeled]; [seq(combstruct[count](spec, size=n), n=0..20)]; # Vladeta Jovovic, Jun 25 2007
MATHEMATICA
max = 18; se = Series[ -1/2*ProductLog[ -2/3*Exp[-2/3 + 1/3*x]] - 1/3 - x/3 , {x, 0, max}]; Join[{0, 0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) ]* Range[0, max]! (* Jean-François Alcover, Jun 24 2013, after Vladeta Jovovic *)
CROSSREFS
Cf. A058562.
Sequence in context: A369024 A379856 A371027 * A380044 A355220 A375475
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 26 2000
STATUS
approved