login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369024
Expansion of (1/x) * Series_Reversion( x * (1-2*x)^4 / (1-x) ).
2
1, 7, 81, 1135, 17617, 291479, 5038177, 89901023, 1643514849, 30623478951, 579444828465, 11103818394447, 215053322179121, 4202849976054583, 82778942956393409, 1641477474636943295, 32743892109730116801, 656612555241354578759, 13228883898856161274129
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(4*n+2,n-k).
D-finite with recurrence -2*(462919*n-251445)*(4*n+1) *(2*n+1)*(4*n+3) *(n+1)*a(n) +(625365036*n^5 +403579400*n^4 -437229300*n^3 +49132810*n^2 -20878971*n +3771675)*a(n-1) +(484851248*n^5 -3077382030*n^4 +7964893000*n^3 -10232074140*n^2 +6398384592*n -1533654945)*a(n-2) +(652184*n-451475)*(4*n-9) *(n-2)*(4*n-7)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jan 25 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-2*x)^4/(1-x))/x)
(PARI) a(n, s=1, t=4, u=-1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Sequence in context: A364322 A339710 A112119 * A379856 A371027 A058575
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 12 2024
STATUS
approved