

A364322


Number of partitions of 2n with largest part n where each block of part i with multiplicity j is marked with a word of length i*j over a (2n)ary alphabet whose letters appear in alphabetical order and all 2n letters occur exactly once in the partition.


2



1, 1, 7, 81, 841, 10333, 137677, 1973401, 29150551, 484498301, 8769443541, 167200081777, 3311785261513, 66867027890601, 1437872937193801, 33031740883673521, 796918495251727081, 19807865344255857661, 501642119664087055501, 12828972405814319046601
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) is also the number of endofunctions on [2n] such that n is the range maximum and the number of elements that are mapped to m is divisible by m. a(2) = 7: (2211), (2121), (2112), (1221), (1212), (1122), (2222).
All terms are odd.


LINKS



FORMULA



EXAMPLE

a(2) = 7: 2ab11cd, 2ac11bd, 2ad11bc, 2bc11ad, 2bd11ac, 2cd11ab, 22abcd.


MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(ni*j, i1)*binomial(n, i*j), j=0..n/i)))
end:
a:= n> b(2*n, n)`if`(n=0, 0, b(2*n, n1)):
seq(a(n), n=0..23);


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



