login
A088221
Coefficient of x^n in g.f.^n is A000698(n+1).
1
1, 2, 3, 10, 63, 558, 6226, 82836, 1272555, 22103638, 427715118, 9118752300, 212335628550, 5362040637900, 145970732893284, 4261945511044520, 132868133756374707, 4405535689300995942, 154819142574597555670
OFFSET
0,2
LINKS
Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019).
Ali Assem Mahmoud and Karen Yeats, Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions, arXiv:2010.06550 [math.CO], 2020.
FORMULA
a(n) = Sum_{j=1..n-1} (4*j-1)*A000699(j)*A000699(n-j), with a(0)=1, a(1)=2. - G. C. Greubel, Feb 08 2020
MAPLE
c:= proc(n) option remember;
if n=1 then 1
else (n-1)*add( c(j)*c(n-j), j=1..n-1)
fi; end:
a:= proc(n) option remember;
if n<2 then n+1
else add( (4*j-1)*c(j)*c(n-j), j=1..n-1)
fi; end;
seq(a(n), n=0..20); # G. C. Greubel, Feb 08 2020
MATHEMATICA
c[n_]:= c[n]= If[n==1, 1, (n-1)*Sum[c[j]*c[n-j], {j, n-1}]];
a[n_]:= If[n<2, n+1, Sum[(4*j-1)*c[j]*c[n-j], {j, n-1}]];
Table[a[n], {n, 0, 20}] (* G. C. Greubel, Feb 08 2020 *)
PROG
(Sage)
@CachedFunction
def c(n):
if (n==1): return 1
else: return (n-1)*sum( c(j)*c(n-j) for j in (1..n-1) )
def a(n):
if (n<2): return n+1
else: return sum( (4*j-1)*c(j)*c(n-j) for j in (1..n-1) )
[a(n) for n in (0..20)] # G. C. Greubel, Feb 08 2020
CROSSREFS
Sequence in context: A066526 A093856 A173097 * A206296 A124923 A291935
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 24 2003
STATUS
approved