login
A088220
Coefficient of x^n in g.f.^n is A000172(n).
2
1, 2, 3, 4, 9, 24, 75, 252, 903, 3376, 13068, 51960, 211222, 874440, 3676335, 15660680, 67474980, 293617248, 1288876879, 5701688928, 25397905302, 113838544880, 513117505278, 2324638603980, 10580591966824, 48362627748240
OFFSET
0,2
LINKS
FORMULA
G.f.: x / Series_Reversion( x*exp( Sum_{n>=1} A000172(n)*x^n/n ) ), where A000172(n) is the n-th Franel number. - Paul D. Hanna, May 25 2014
PROG
(PARI) a(n)=polcoeff(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^3)*x^m/m +x^2*O(x^n)))), n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, May 25 2014
CROSSREFS
Cf. A242903.
Sequence in context: A122534 A101135 A280054 * A333431 A085612 A073915
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 24 2003
STATUS
approved