The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276076 Prime-factorization representations of "factorial base digit polynomials": a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)). 20
 1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples. LINKS Antti Karttunen, Table of n, a(n) for n = 0..5040 Indranil Ghosh, Python program for computing this sequence FORMULA a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)). Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n). Other identities. For all n >= 0: A276075(a(n)) = n. A001221(a(n)) = A060130(n). A001222(a(n)) = A034968(n). A051903(a(n)) = A246359(n). A048675(a(n)) = A276073(n). A248663(a(n)) = A276074(n). a(A007489(n)) = A002110(n). a(A059590(n)) = A019565(n). For all n >= 1: a(A000142(n)) = A000040(n). a(A033312(n)) = A076954(n-1). EXAMPLE n  A007623   polynomial     encoded as             a(n)    -------------------------------------------------------    0       0    0-polynomial   (empty product)        = 1    1       1    1*x^0          prime(1)^1             = 2    2      10    1*x^1          prime(2)^1             = 3    3      11    1*x^1 + 1*x^0  prime(2) * prime(1)    = 6    4      20    2*x^1          prime(2)^2             = 9    5      21    2*x^1 + 1*x^0  prime(2)^2 * prime(1)  = 18    6     100    1*x^2          prime(3)^1             = 5    7     101    1*x^2 + 1*x^0  prime(3) * prime(1)    = 10 and:   23     321  3*x^2 + 2*x + 1  prime(3)^3 * prime(2)^2 * prime(1)                                       = 5^3 * 3^2 * 2 = 2250. PROG (Scheme, two versions) (define (A276076 n) (if (zero? n) 1 (* (expt (A000040 (A084558 n)) (A099563 n)) (A276076 (A257687 n))))) (define (A276076 n) (if (zero? n) 1 (* (A275733 n) (A276076 (A276009 n))))) CROSSREFS Cf. A000040, A007623, A084558, A099563, A257687, A276009. Cf. A276075 (a left inverse). Cf. A276078 (same terms in ascending order). Cf. also A000142, A001221, A001222, A002110, A007489, A019565, A033312, A034968, A048675, A051903, A059590, A060130, A076954, A246359, A248663, A276073, A276074. Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials. Sequence in context: A018251 A218339 A329248 * A276086 A018402 A018441 Adjacent sequences:  A276073 A276074 A276075 * A276077 A276078 A276079 KEYWORD nonn,base AUTHOR Antti Karttunen, Aug 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 20:58 EDT 2020. Contains 334597 sequences. (Running on oeis4.)