login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276079
Numbers n such that prime(k)^(k+1) divides n for some k.
11
4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1 - Product_{i>=1} 1-prime(i)^(-1-i) = 0.2789766... - Amiram Eldar, Oct 21 2020
LINKS
EXAMPLE
625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A276079 (NONZERO-POS 1 1 A276077))
(Python)
from sympy import primepi, isprime, primefactors, factorint
def a028234(n):
f=factorint(n)
minf = min(f)
return 1 if n==1 else n//(minf**f[minf])
def a067029(n):
f=factorint(n)
return 0 if n==1 else f[min(f)]
def a049084(n): return primepi(n) if isprime(n) else 0
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0)
print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017
CROSSREFS
Positions of nonzeros in A276077.
Complement: A276078.
Cf. A000040, A000720, A008586 (a subsequence).
Differs from its subsequence A100716 for the first time at n=175, where a(175) = 625, while that value is missing from A100716.
Sequence in context: A086133 A100716 A328251 * A311124 A191677 A076310
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2016
STATUS
approved