The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276082 a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A255411(a(n)). 5
 0, 1, 2, 5, 6, 13, 14, 23, 24, 49, 50, 77, 54, 85, 86, 119, 120, 241, 242, 365, 246, 373, 374, 503, 264, 409, 410, 557, 414, 565, 566, 719, 720, 1441, 1442, 2165, 1446, 2173, 2174, 2903, 1464, 2209, 2210, 2957, 2214, 2965, 2966, 3719, 1560, 2401, 2402, 3245, 2406, 3253, 3254, 4103, 2424, 3289, 3290, 4157, 3294, 4165, 4166, 5039, 5040, 10081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Antti Karttunen, Table of n, a(n) for n = 0..8191 FORMULA a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A255411(a(n)). Other identities. For all n >= 0: a(n) = A225901(A276083(n)). PROG (Scheme, with memoization-macro definec) (definec (A276082 n) (cond ((zero? n) n) ((even? n) (A153880 (A276082 (/ n 2)))) (else (+ 1 (A255411 (A276082 (/ (- n 1) 2))))))) (Python) from sympy import factorial as f def a007623(n, p=2): return n if n

0 else '0' for i in x])[::-1] return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a153880(n):     x=(str(a007623(n)) + '0')[::-1] return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in range(len(x))]) def a(n): return 0 if n==0 else a153880(a(n/2)) if n%2==0 else 1 + a255411(a((n - 1)/2)) print [a(n) for n in range(101)] # Indranil Ghosh, Jun 20 2017 CROSSREFS Cf. A153880, A255411 Cf. also A059590, A275959, A276091, A225901, A276083. Sequence in context: A069480 A100613 A070911 * A113240 A098376 A028259 Adjacent sequences:  A276079 A276080 A276081 * A276083 A276084 A276085 KEYWORD nonn,base AUTHOR Antti Karttunen, Aug 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 03:48 EDT 2020. Contains 333136 sequences. (Running on oeis4.)