This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276083 a(0) = 0, a(2n) = A255411(a(n)), a(2n+1) = 1+A153880(a(n)). 5
 0, 1, 4, 3, 18, 13, 16, 9, 96, 73, 76, 51, 90, 61, 64, 33, 600, 481, 484, 363, 498, 373, 376, 249, 576, 433, 436, 291, 450, 301, 304, 153, 4320, 3601, 3604, 2883, 3618, 2893, 2896, 2169, 3696, 2953, 2956, 2211, 2970, 2221, 2224, 1473, 4200, 3361, 3364, 2523, 3378, 2533, 2536, 1689, 3456, 2593, 2596, 1731, 2610, 1741, 1744, 873, 35280, 30241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Antti Karttunen, Table of n, a(n) for n = 0..8191 FORMULA a(0) = 0, a(2n) = A255411(a(n)), a(2n+1) = 1+A153880(a(n)). Other identities. For all n >= 0: a(n) = A225901(A276082(n)). PROG (Scheme, with memoization-macro definec) (definec (A276083 n) (cond ((zero? n) n) ((even? n) (A255411 (A276083 (/ n 2)))) (else (+ 1 (A153880 (A276083 (/ (- n 1) 2))))))) (Python) from sympy import factorial as f def a007623(n, p=2): return n if n

0 else '0' for i in x])[::-1]     return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in xrange(len(y))]) def a153880(n):     x=(str(a007623(n)) + '0')[::-1]     return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in xrange(len(x))]) def a(n): return 0 if n==0 else a255411(a(n/2)) if n%2==0 else 1 + a153880(a((n - 1)/2)) print [a(n) for n in xrange(101)] # Indranil Ghosh, Jun 20 2017 CROSSREFS Cf. A153880, A255411. Cf. also A059590, A275959, A276091, A225901, A276082. Sequence in context: A034486 A130515 A302851 * A161893 A192773 A183231 Adjacent sequences:  A276080 A276081 A276082 * A276084 A276085 A276086 KEYWORD nonn,base AUTHOR Antti Karttunen, Aug 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:37 EST 2019. Contains 329800 sequences. (Running on oeis4.)